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Abstract. Ultrarhin quantum wells in semicanductor smctures represent a short-range 
perturbation in the barrier material In order to describe bound electronic states in such systems 
we adopt the concept of the zero-radius potential model, developed earlier in nuclear physics 
by Berhe and Peierls. Our one-dimensional version of this phenomenological model i s  applied 
to electrons, donon and holes. 

1. Introduction 

Presently there is a surge of activity in the experimental studies of semiconductor structures 
with ultrathin quantum wells of one or two monolayers [I]. The interest is stimulated by 
the possibility of fabricating heterostructures for optical and high-speed device applications 
but also by the fact that even materials with large lattice mismatch can be used for this 
purpose. The envelope-function approximation (EFA) [2] as the predominant concept to 
describe electron and hole states in quantum well heterostructures does not seem to apply 
here because the width of the well is of the order of the lattice constant. 

From elementary quantum mechanics 131, it is known that a one-dimensional rectangular 
potential with finite barrier has always at least one (symmetrical) bound state. For a potential 
of given barrier height U0 with decreasing width L we arrive at a situation where the space 
quantization energy for the lowest bound state becomes comparable to UO, i.e. this state 
is only weakly bound by the potential. As the localization length of this state is large 
compared to the width L of the potential, its wavefunction is essentially determined by 
the barrier Hamiltonian. This situation is appropriately considered within the concept of 
zero-radius potential [4]. This model was introduced by Bethe and Peierls in their quantum 
theory of the deuteron [5]. In semiconductor physics this concept has been considered for 
deep defects I681 in the context of photoionization and multiphonon processes. In contrast 
to these threedimensional problems ultrathin wells represent a one-dimensional zero-size 
potential problem. 

To demonstrate the feasibility of this concept we consider electron and hole states in 
ultrathin quantum wells and calculate the dispersion of hole subbands and the binding 
energy of donor states with the impurity located in the ultrathin quantum well. Three 
phenomenological parameters will occur in this model which are related to the binding 
energies of electrons and heavy and light holes. These parameters have to be determined 
by fitting to experimental.data. 
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Figure 1. (a) Energy of lowest bound states in a quantum well with barrier height Uo versus 
quantum well width L. Solid lines a~ effective-mass results assuming equal masses in well 
and barrier (solid lines); squares mark results obtained with different masses in well md banier. 
Dash-dotted lines represent analytic results according lo ( I )  and (2). Masses U" (given in the 
text) correspond to Gag,.~Ala,gAdGaAs. (b) Same as in (a) but for heavy holes (hh) and light 
holes (Ih). 

2. Range of validity of the model 

Before we start to do calculations using the zero-size potential model, we want to 
demonstrate its range of validity. For this purpose we consider as an example 
GaAs/Gar,.7Alo,3As quantum wells. Figure l(a) shows the lowest subband states of electrons 
as functions of the width L of the quantum well obtained in the effective-mass approximation 
in comparison with the analytic expressions for the lowest bound state in the infinite-barrier 
model 

as the limiting case of large L, and for the ultrathin rectangular potential of infinite height 
U0 

which is valid for L + 0 [3]. The effective-mass data are obtained using equal masses 
in well and barrier (solid line) and taking the mass difference into account (squares). The 
parameters used are those for GaAs (me = 0.0665mo) and G ~ . ~ A I O . ~ A S  (me = 0.0887mo) 
and an offset U0 = 343 meV. 
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The quantum well width LO below which only a single state (Eo) is bound is related to 
the barrier height by [3] 

We may introduce the localization length K-’ for a state with binding energy Eb, which will 
be a parameter in the zero-size potential model (see section 3): 

Using equations (3) and (4) we obtain for L = Lo (as indicated in figure 1 )  the relation 

If the same mass is used in well and barrier (solid line in figure l(a)) we find Eb(L0) 
0.64Uo and for the right-hand side of equation (5) a value of about two. 

The zero-size model requires the localization length K-‘ to be large compared to the 
width L of the potential, i.e. K L  << I .  This range is indeed reached when going to values 
L smaller than LO, when <b(L) and thus K(L) get smaller at the same time. So the region 
of validity of the zero-size potential model is L c Le,  with L, (indicated in figure I(a)) 
defined by K(L,)L,  = 1. In this region we may also use the approximation of (4). 

Similar considerations, though with different mass parameters. can be applied to heavy 
and light holes (see figure l(b)). As the corresponding ultimate values for the validity of 
the zero-size model we introduce Lhh and Llh for heavy and light holes, respectively. 

3. Electron states and donors 

We consider an isolated ultrathin quantum well grown in the (001) direction embedded in 
the barrier material. It will be experienced by free electrons with effective mass me in the 
barrier material as a short-range potential, which in the framework of the zero-size potential 
model can be considered by the following Schrodinger equation: 

Here the energy is counted from the bottom of the barrier-material conduction band. ’ The 
only bound-state solution ( E  c 0) of equation (6) is 

@ = AeXp(-KlzI) (70 )  

h2K2 
E = -- 

2me 

with the normalization constant 

A = & .  



7930 

The solution of (6) can be given also in the &representation: 
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The case of donors with the impurily located in the centre of the ultrathin quantum 
well can be easily considered by adding the Coulomb potential thus dealing instead of 
equation (6) with the threedimensional problem 

ez h2 
--A - - - --KS(Z) 

where €0 is the dielectric constant, and r = z d w .  The variational solution to (9) 
with the trial function [9] 

leads to a simple equation for the variational parameter h 

K Q  

( 2 1  + K a B ) ”  
A = 1 +  

Here oB = h z ~ ~ , ” , e z  is the Bohr radius. The donor binding energy is equal to 

where ho is the root of (I  1) and EB = m,e4/2h2e~ the effective Rydberg constant. The 
dependence of Eo on the quantum-well parameter K is presented in figure 2. For K = 0 we 
recover the three-dimensional lowest bound donor state ( E D  = - E B ) .  With increasing K 

the binding to the quantum well increases as the electron is more and more localized around 
z = 0. 

4. Dispersion of hole subbands 

The hole states derive from the topmost fourfold rs valence-band state of the bulk band 
structure. Taking the growth direction of the quantum well as the quantization axis for the 
basis the effective-mass Hamiltonian is the 4 x 4 Luttinger matrix operator quadratic in 
IE = -iV [IO]: 

/ aL  b c 0 \ 
b* a- 0 

0 c* -b* a+ 

Ho = - 
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Figure 2. Binding energy of the 
lowest donor slate in an ultnthin 
quantum well versus inverse local- 
ization length v. Effective atomic 
units (EB for energy. ag for length) 
are used. 

3 

and y1 n, M are the Luttinger parameters. Here we use the cylindrical approximation [I 11, 
by neglecting the warping of the valence band for motion along the quantum well, i.e. in 
the (kx, ky) plane. 

The effect of an ultrathin quantum well will be taken into account by introducing in 
analogy to equation (6) the potential mahix 

0 0 0 \ 

0 0 0 
(14) 

Here Eh and KI will be considered as phenomenological parameters which are connected 
with the binding energy of confined holes by the relations (see equation (4)) 

mhh and mlh being the effective masses of heavy and light holes, respectively. These energies 
have to be different, because the quantum well breaks the cubic symmetry and removes the 
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degeneracy of the bulk valence band rg. We will look for the solution of the Schrijdinger 
equation 

I Yussievich and U Riissler 

(Ho + V)Y = eY (16) 

following [ l l ,  121. 
The full Hamiltonian Ho + V has translational symmetry in the (x,  y )  plane, therefore, 

the in-plane momentum (kx, k,) is conserved. In the axial approximation of the Luttinger 
Hamiltonian we can deliberately choose k, = 0 and call k, = q. 

Let us consider first the free Schrodinger equation Ho@ = E @ ;  however, for a bound 
state, i.e. E is positive. As for travelling waves ( E  < 0) we obtain four painvise degenerate 
solutions, which go to zero for z + Am, for heavy and light holes 17 = h, I: 

* ,'I - - Leiwe-Y"lil Xpq(Kq, q, E )  & = 1, 2 (17) 

with 

where u + ( K ~ ,  q) ,  b ( ~ ~ ,  q )  and c(q) are obtained by applying the operators of 
equations (13a-d) to the solution (17) of the free Schrodinger equation, i.e. replacing the 
vector operator (Ex, E,. E,) by (q, 0, iK, sign 2) .  Here K, is connected with the energy E 

by the relation 

[ Q ( K q ,  4)  - E ] [ a - ( K q .  4)  -61 - b * ( K q ,  4)b(Kq,  S ) - C * ( q ) C ( q ) = o .  (19) 

By solving this equation for K,, we obtain for 7 = 1, h 

f [ ~ E Y I  + (Y: + 4~22 + 6y:)q2I2 - CY? - 4y2)[(4p2+ 4€yiq2) 

2 4 -I/ + (Y: - Y3' - 37 )4  ] 
(7.0) 

In (20) the + sign (- sign) corresponds to heavy (light) holes. 

for the free Schrijdinger equation with fixed in-plane momentum q and energy E :  
The solution of (16) can now he represented as a superposition of the solutions obtained 

Note that Q,, solves the full Schrijdinger equation already for z # 0. In order to find the 
determining equations for the expansion coefficients A,, we integrate the full Schrodinger 
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Figure 3. Dispersion afthe heavy-hole (hh) and light-hole (Ih) subband for an ultrathin quantum 
well in GaAs and Gao.~Alo.~As. Energies are given in units ofthe heavy-hole energy eh t y = 0, 
and Ihe in-plane wave vector q in units of the invene localization length 0 of the heavy hole. 

equation over the small interval which includes the zero-size potential V and obtain 

The upper index indicates the component c :spinor xPq counted from top to bottom (see 
(18)). The condition of solvability for these linear equations, which allows us to find the 
energy E ,  reads 
(i$,b-Kh)2(ij-KI)  2 A - 2 ( K h - K h ) ( ~ [ - K [ ) ( ~ h - K [ ) ( ~ I - K h ) B  

( 2 3 4  

( 2 3 ~  

2 + (21 - Kb)'(Ch - Kj) c = 0 
where 

A = [ ~ + ( K I ,  4) - E][a-(Kh. 4)  - €1 

B = b(Kh. 4)b*(Ki, 4 )  f C(q)C*(q) 

c = [a+(Kh. 4 )  - €][~-(KI.  4)  - €1. 
(234 

( 2 3 4  

In order to find (23a-d) we have used also equation (19). 
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In view of application to special cases we present in figure 3 calculations for hole 
subband dispersions obtained for ultrathin quantum wells in G~.?Alo,3As (the standard well 
material would be GaAs) or in GaAs (with e.g. InAs as well material). The materials 
determine the results (except for the Luttinger parametcrs) by the ration <lh/<j,h which was 
taken to be 0.3 in the former (solid line) and 0.2 in the latter case (dashdotted line). The 
following Luttinger parameters have been used yr = 6.85 (5.308), fi = 2.10 (1.434), y3 = 
2.90 (2.162) for GaAs (Ga~Alo.,As). 

The corresponding coefficients A,, can be easily obtained from (22). Thus, the problem 
of hole states in the ultrathin quantum well is solved. However, the phenomenological 
parameters &, and 4 should be found by fitting to experiments. 

In conclusion, we have introduced the zero-size potential model to describe bound 
electronic states in ultrathin quantum wells. The model, which contains the binding energy 
(or the localization length of the bound state) as a phenomenological parameter, is applied 
to electrons, donors and holes. This model may serve in future applications to excitons and 
optical properties in systems with ultrathin quantum wells. 
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