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Abstract.  Ultrathin quantum wells in semiconductor structures represent a short-range
perturbation in the barrier material. In order to describe bound electronic states in such systemns
we adopt the concept of the zero-radius potential model, developed earlier in nuclear physics
by Bethe and Peierls. Qur one-dimensional version of this phenomenological mode! is applied
to electrons, donors and holes.

1. Introduction

Presently there is a surge of activity in the experimental studies of semiconductor structures
with ultrathin quantum wells of one or two monolayers [1]. The interest is stimulated by
the possibility of fabricating heterostructures for optical and high-speed device applications
but also by the fact that even materials with large lattice mismatch can be used for this
purpose. The envelope-function approximation (EFA) [2] as the predominant concept to
describe electron and hole states in quantum well heterostructures does not seem to apply
here because the width of the well is of the order of the lattice constant.

From elementary quantum mechanics [3], it is known that a one-dimensional rectangular
potential with finite barrier has always at least one (symmetrical) bound state. For a potentiat
of given barrier height Uy with decreasing width L we arrive at a situation where the space
quantization energy for the lowest bound state becomes comparable to Up, i.e. this state
is only weakly bound by the potential. As the localization length of this state is large
compared to the width L of the potential, its wavefunction is essentially determined by
the barrier Hamiltonian., This situation is appropriately considered within the concept of
zero-radius potential [4]. This model was introduced by Bethe and Peierls in their quantum
theory of the deuteron [5]. In semiconductor physics this concept has been considered for
deep defects [6-8] in the context of photoionization and multiphonon processes. In contrast
to these three-dimensional problems ultrathin wells represent z one-dimensional zero-size
potential problem.

To demonstrate the feasibility of this concept we consider electron and hole states in
ultrathin quantum wells and calculate the dispersion of hole subbands and the binding
energy of donor states with the impurity located in the ultrathin quantum well. Three
phenomenological parameters will occur in this model which are related to the binding
energies of electrons and heavy and light holes. These parameters have to be determined
by fitting to experimental data.
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Figure 1. {a) Energy of lowest bound states in a quantum well with barrier height Uy versus
quantum well width L. Solid lines are effective-mass results assuming equal masses in well
and barrier (solid lines); squares mark results obtained with different masses in well and barrier.
Dash—dotted lines represent analytic results according to (1) and (2). Masses Uy (given in the
text) correspond to Gap;Alp3As/GaAs. (by Same as in (a} but for heavy holes (hh} and light
holes (th).

2. Range of validity of the model

Before we start to do calculations using the zero-size potential model, we want to
demonstrate its range of wvalidity. For this purpose we consider as an example
GaAs/Gag 7Alp3As quantum wells. Figure 1(a) shows the lowest subband states of electrons
as functions of the width L of the quantum well obtained in the effective-mass approximation
in comparison with the analytic expressions for the lowest bound state in the infinite-barrier

model
B2 fr\?
e

as the limiting case of large L, and for the ultrathin rectangular potential of infinite height
Uy

m.L?
%:%—jﬁﬁ (2)

which is valid for L — 0 [3]. The effective-mass data are obtained using equal masses
in well and barrier (solid line) and taking the mass difference into account (squares). The
parameters used are those for GaAs (m. = 0.0665mg) and GagyAlgsAs (m, = 0.0887my)
and an offset Uy = 343 meV.
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The quantum well width Ly below which only a single state (Ep) is bound is related to
the barrier height by [3]

hZ

2m Uy ®)

Lo=3’1’

We may introduce the localization length =} for 2 state with binding energy &, which will
be a parameter in the zero-size potential model (see section 3):

B (L)?

I {4

(L) =Up— Eg(L) =

Using equations (3} and (4) we obtain for L = Ly (as indicated in figure 1) the relation

es{Lo)

A 5

i(Lo)Lo =

¥ the same mass is used in well and barrier (solid line in figure 1{a})) we find e,{(Lo)} =
0.64U4 and for the right-hand side of equation (5) a value of about two,

The zero-size model requires the localization length «~! to be large compared to the
width L of the potential, i.e. xL « 1. This range is indeed reached when going to values
L smaller than Ly, when €,(L) and thus «(L) get smalier at the same time. So the region
of validity of the zero-size potential model is L < L., with L. (indicated in figure 1(a))
defined by # (L)L, = 1. In this region we may also use the approximation of (4).

Similar considerations, though with different mass parameters, can be applied to heavy
and light holes (see figure 1(b}). As the corresponding ultimate values for the validity of
the zero-size model we introduce Ly, and Ly, for heavy and light holes, respectively.

3. Electron states and donors

We consider an isolated ultrathin quantum well grown in the {001} direction embedded in
the barrier material, It will be experienced by fiee electrons with effective mass m. in the
barrier material as a short-range potential, which in the framework of the zero-size potential
model can be considered by the following Schridinger equation:

2 g2 g2
( R _ h_,cg(z))w = ey, (6)

2m, 0z2

Here the energy is counted from the bottom of the barrier-material conduction band. The
only bound-state solution (¢ < 0) of equation (6) is

¥ = Aexp(—«|z]) (Ta}
2.2
e= _zn'; (7b)

with the normalization constant

A= k. ‘ (7c)
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The solution of (6) can be given also in the k-representation:

7

& i, Ak
'ﬂb'(Z) = j; C(k)e’kz—ZE C(]C) = ;m

(&)

The case of donors with the impurity located in the centre of the ultrathin quantum
well can be easily considered by adding the Coulomb potential thus dealing instead of
equation (6) with the three-dimensional problem

2 2 hZ
(_;ﬁ_ Aol _xa(z))w EV ©)
2m, &r m

where g is the dielectric constant, and r = z,/x2 4 y? + z2. The variational solution to (9)
with the trial function [9]

Ar
0, = exp{—w—— - KIZ[} (1w
ag
leads to a simple equation for the variational parameter A
=142 an
(21 + kag)

Here ag = h%cp/m.e? is the Bohr radius. The donor binding energy is equal to

2
Ep =2Ep [xu(l +vro— 1) - }‘2—0} (12)

where g is the root of (11} and Ep = mee“/ﬂizeg the effective Rydberg constant. The
dependence of Ep on the quantum-well parameter « is presented in figure 2. For ¢ = 0 we
recover the three-dimensional lowest bound donor state (Ep = —Eg). With increasing «
the binding to the quantam well increases as the electron is more and more localized around
z=0.

4. Dispersion of hole subbands

The hoie states derive from the topmost fourfold I's valence-band state of the bulk band
structure, Taking the growth direction of the quantum well as the quantization axis for the

basis the effective-mass Hamiltonian is the 4 x 4 Luttinger matrix operator quadratic in
K= -1V [10]:

a, b € 0
A a 0 c

=2l 0 o - (13)
0 ¢ —b* a,
where
az = —3{(n F2)k; — 3 (n £ ) (’E + E?) (136)
b — 3yl — ik, )12 (13¢)
3.

¢= Tr(k —iky)* 7 =(n+n)2 (134)
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Figure 2. Binding energy of the
lowest donor state in an ultrathin
1.0 A . . . quanturn well versus inverse local-
-0 5 10 15 20  ization length &, Effective atomic
units (Ep for energy, ap for length)
Kdgp are used.

and y1 14, vs are the Luttinger parameters. Here we use the cylindrical approximation [11],
by neglecting the warping of the valence band for motion along the quantum well, i.e. in

the (ky, &,) plane.
The effect of an ultrathin quantum well will be taken into account by introducing in

analogy to equation (6) the potential matrix

Kn(y1 — 2y2)8(z) 0 0 0
V= L 0 €1(y1 + 2¥2)8(z) 0 0
" mg 0 0 &i(n + 21)é(z) -0

0 0 0 kn (1 + 2y2)8(z)

(14)

Here &, and i will be considered as phenomenological parameters which are connected
with the binding energy of confined holes by the relations (see equation (4))

R —2p)_, B
= Ki = 15
i 2my i 2y (15)
RO +2y2) L, REe?
b= (1 ¥2) ’C12 = 1 (158)
Zmg 2mm

myy, and my, being the effective masses of heavy and light holes, respectively. These energies
have to be different, because the quanturn well breaks the cubic symmetry and removes the
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degeneracy of the bulk valence band I's. We will look for the solution of the Schrédinger
equation

(Ho + V}¥ =¥ (16)

following [11,12].

The full Hamiltonian Hy + V has translational symmetry in the (x, y) plane, therefore,
the in-plane momentum (k. k,) is conserved. In the axial approximation of the Luttinger
Hamiltonian we can deliberately choose &, = 0 and call k; = g.

Let us consider first the free Schrodinger equation Hyyr = eyr; however, for a bound
state, i.e. € is positive. As for travelling waves (¢ < 0) we obtain four pairwise degenerate
solutions, which go to zero for z — oo, for heavy and light holes n = h, I;

1
Yy = I_q_qux -x,,lzlx n(’cu» q, €) =12 (17
with
a-{xq. q)—¢ 0
_ -b* (’Cn; ) _ _C(Q)
Ka=1 0 —ev(g) o= b("m q) 1
0 a—{icy, q) —¢

where a:(xy, g), blxy, ¢) and c(g) are obtained by applying the operators of
equations (13a—d) to the solution (17) of the free Schrédinger equation, i.e. replacing the
vector operator (k. k Icz) by (g, 0, ik, sign z). Here &, is connected with the energy
by the relation

[a+(kns q) — €][a-(ky» @) — €] =~ b*{iy, @)B (K3, ) ~ *(g)c(g) =0. (19)

By solving this equation for «,, we cbtain for n =1 h

1 .
bl yll —4}'22 ( I A 3)

+ [2ey + (v +4y2 + YD P — (v — 4yD(de® + deyigh)

+ 07— v =370g" ] 2}-
: (20)
In (20) the + sign (— sign) corresponds to heavy (light) holes.

The solution of (16) can now be represented as a superposition of the solutions obtained
for the free Schrodinger equation with fixed in-plane momentum ¢ and energy e:

V=3 Wuhu. _ (21}
an

Note that ¥, solves the full Schrédinger equation already for z #£ 0. In order to find the
determining equations for the expansion coefficients A, we integrate the full Schrédinger
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Figure 3. Dispersion of the heavy-hole (hh) and light-hole (ik) subband for an ultrathin quantum

well in GaAs and Gap7Alp3As. Energies are given in units of the heavy-hole energy ep, at g =0,
and the in-plane wave vector g in units of the inverse localization length «y, of the heavy hole,

equation over the small interval which includes the zero-size potential V and obtain
Z(’Eh - K’T)XJEIH)A#’T =0

“n
D (B ) x Ay =0

“n

D (=) x A =0 (22)
et i

Z(’?h — k) Xy Aun = O

wn

p=1,2 n="h, L

The upper index indicates the component of the spinor x,., counted from top to Eottom (see
(18)). The condition of solvability for these linear equations, which allows us to find the
energy €, reads

(%o — 1) (& — 11)> A — 2(in — e} (&1 — 1) (@ — 1) (R1 — k) B

+ (71— ) (Rn — 1)°C =0 (23a)
where )

A =[a:(n, q) — €]fa-(x. q) — €] (23b)

B = b{kn, 9)b* (1, 4) + c(@)c* (@) (23¢)

C = [a: (k. g) — €][a—(k1. @) —€]. (234)

In order to find (23a—d) we have used also equation (19).
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In view of application to special cases we present in figure 3 calculations for hole
subband dispersions obtained for ultrathin quantum wells in Gag7Alg3As (the standard well
material would be GaAs) or in GaAs (with e.g. InAs as well material). The materials
determine the results (except for the Luttinger parameters) by the ration €y /ey which was
taken to be 0.3 in the former (solid line) and 0.2 in the latter case (dash—dotted line). The
foliowing Luttinger parameters have been used: y; = 6.85 {5.308), 15 = 2.10 (1.434), 15 =
2.90 (2.162) for GaAs (Gap7AlpaAs).

The corresponding coefficients A, can be easily obtained from (22). Thus, the problem
of hole states in the ulirathin quantum well is solved. However, the phenomenalogical
parameters &y and /4 should be found by fitting to experiments,

In conclusion, we have introduced the zero-size potential model to describe bound
electronic states in ultrathin quantum wells. The model, which contains the binding energy
(or the localization length of the bound state) as a phenomenological parameter, is applied
to electrons, donors and holes. This model may serve in future applications to excitons and
optical properties in systems with ultrathin quantom wells,
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